The Contribution of Local Wind and Ocean Circulationto the Interannual Variability in Coastal Upwelling Intensity in the Northern South China Sea

Abstract
Using in situ data, satellite observations, and model outputs, we analyzed the interannual variability in coastal upwelling intensity in the northern South China Sea. Comparing coastal upwelling observed from three cruises during the summers of 2008 and 2016, we found that coastal upwelling was stronger during 2016 compared to 2008, although the local upwelling favorable wind was stronger in 2008. The stronger near-bottom cross-shelf current and shallower thermocline in the slope resulted in stronger upwelling intensity during the summer of 2016. The topographic position index (TPI), which is defined by the sea surface temperature difference between one center cell and its neighbors, was used to quantify the interannual variability in upwelling. Stronger (weaker) upwelling intensity occurred during the summers of 2007, 2008, 2011, 2015, and 2016 (2004, 2009, 2012, and 2014) when the local wind was more favorable (less favorable) to coastal upwelling. The correlation coefficient between the area-weighted TPI and alongshore wind speed was -0.60, thereby confirming that local wind is the primary dynamical factor controlling the interannual variability in upwelling intensity. The correlation coefficient between the area-weighted TPI and the eastward boundary current transport averaged between the 75- and 100-m isobaths on the shelf was -0.42, indicating that the interannual variability in large-scale circulation in the northern South China Sea also contributes to the interannual variability in upwelling intensity. The anomalously shallow thermocline in the summer of 2016 was likely associated with the strong 2015–2016 El Nino event through planetary wave propagations.

附件下载: